Optical Control of Donor Spin Qubits in Silicon.
نویسندگان
چکیده
We show how to achieve optical, spin-selective transitions from the ground state to excited orbital states of group-V donors (P, As, Sb, Bi) in silicon. We consider two approaches based on either resonant, far-infrared (IR) transitions of the neutral donor or resonant, near-IR excitonic transitions. For far-IR light, we calculate the dipole matrix elements between the valley-orbit and spin-orbit split states for all the goup-V donors using effective mass theory. We then calculate the maximum rate and amount of electron-nuclear spin-polarization achievable through optical pumping with circularly polarized light. We find this approach is most promising for Bi donors due to their large spin-orbit and valley-orbit interactions. Using near-IR light, spin-selective excitation is possible for all the donors by driving a two-photon Λ-transition from the ground state to higher orbitals with even parity. We show that externally applied electric fields or strain allow similar, spin-selective Λ-transition to odd-parity excited states. We anticipate these results will be useful for future spectroscopic investigations of donors, quantum control and state preparation of donor spin qubits, and for developing a coherent interface between donor spin qubits and single photons.
منابع مشابه
A photonic platform for donor spin qubits in silicon
Donor spins in silicon are highly competitive qubits for upcoming quantum technologies, offering complementary metal-oxide semiconductor compatibility, coherence (T2) times of minutes to hours, and simultaneous initialization, manipulation, and readout fidelities near ~99.9%. This allows for many quantum error correction protocols, which will be essential for scale-up. However, a proven method ...
متن کاملSilicon-based spin and charge quantum computation
Silicon-based quantum-computer architectures have attracted attention because of their promise for scalability and their potential for synergetically utilizing the available resources associated with the existing Si technology infrastructure. Electronic and nuclear spins of shallow donors (e.g. phosphorus) in Si are ideal candidates for qubits in such proposals due to the relatively long spin c...
متن کاملA surface code quantum computer in silicon
The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in par...
متن کاملQuantum Hall charge sensor for single-donor nuclear spin detection in silicon
We propose a novel optical and electrical hybrid scheme for the measurement of nuclear spin qubits in silicon. By combining the environmental insensitivity of the integer quantum Hall effect with the optically distinguishable hyperfine states of phosphorus impurities in silicon, our system can offer both nuclear spin measurement and robustness against environmental defects. 31P donor spins in i...
متن کاملAcceptor-based silicon quantum computing
A solid-state quantum computer with dipolar coupling between qubits is proposed. The qubits are formed by the low-lying states of an isolated acceptor in silicon. The system has the scalability inherent to spin-based solid state systems, but the spatial separation between the qubits is an order of magnitude larger. Despite strong dipolar inter-qubit coupling, the decoherence rate, as measured b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. B, Condensed matter and materials physics
دوره 92 19 شماره
صفحات -
تاریخ انتشار 2015